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Série 4a Solutions 

Question 4a.1 – Rotation of element 

Consider the state of stress given in Figure 4a.1. 

Determine the normal and shearing stresses after the element shown has been rotated 

through: 

(a) 25° clockwise. 

(b) 10° counterclockwise. 

 

Figure 4a.1 – State of stress on a 2D element 
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Solution 4a.1 

Objectives – what is asked? 

 Normal and shearing stresses after rotation (σx’, σy’, τx’y’) 

What is given? 

A state of stress, where the normal stresses (σx = -40 MPa, σy = 60 MPa) and the shearing stress 

(τxy = 20 MPa) are known. 

The angle of rotation ϴ 

Principles and formulas 

 Rotation of stresses and shear: 

 𝜎𝑥′ =
𝜎𝑥 + 𝜎𝑦

2
+

𝜎𝑥 − 𝜎𝑦

2
𝑐𝑜𝑠(2𝜃) + 𝜏𝑥𝑦 𝑠𝑖𝑛(2𝜃) (1) 

 𝜎𝑦′ =
𝜎𝑥 + 𝜎𝑦

2
−

𝜎𝑥 − 𝜎𝑦

2
𝑐𝑜𝑠(2𝜃) − 𝜏𝑥𝑦 𝑠𝑖𝑛(2𝜃) (2) 

 𝜏𝑥′𝑦′ = −
𝜎𝑥 − 𝜎𝑦

2
sin(2𝜃) + 𝜏𝑥𝑦 cos(2𝜃) (3) 

 

Calculations 

(a) For 25° clockwise (-25°): 

 
𝜎𝑥′ =

−40 + 60

2
+

−40 − 60

2
𝑐𝑜𝑠(2 ∗ −25°) + 20 𝑠𝑖𝑛(2 ∗ −25°) = 

− 37.5 𝑀𝑃𝑎 
(4) 

 
𝜎𝑦′ =

−40 + 60

2
−

−40 − 60

2
𝑐𝑜𝑠(2 ∗ −25°) − 20 𝑠𝑖𝑛(2 ∗ −25°)

=  57.5 𝑀𝑃𝑎 
(5) 

 𝜏𝑥′𝑦′ = −
−40 − 60

2
𝑠𝑖𝑛(2 ∗ −25°) + 20 𝑐𝑜𝑠(2 ∗ −25°) =  −25.4 𝑀𝑃𝑎  (6) 

 

(b) For 10° counterclockwise (10°): 

 𝜎𝑥′ =
−40 + 60

2
+

−40 − 60

2
𝑐𝑜𝑠(2 ∗ 10°) + 20 𝑠𝑖𝑛(2 ∗ 10°) = −30.1 𝑀𝑃𝑎  (7) 

 𝜎𝑦′ =
−40 + 60

2
−

−40 − 60

2
𝑐𝑜𝑠(2 ∗ 10°) − 20 𝑠𝑖𝑛(2 ∗ 10°) = 50.1 𝑀𝑃𝑎  (8) 

 𝜏𝑥′𝑦′ = −
−40 − 60

2
𝑠𝑖𝑛(2 ∗ 10°) + 20 𝑐𝑜𝑠(2 ∗ 10°) = 35.9 𝑀𝑃𝑎 (9) 
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Question 4a.2 – Stress and shear in a direction 

The grain of a wooden member forms an angle of 15° with the vertical. Consider the state of stress 

shown in Figure 4a.2. 

(a) Determine the in-plane shearing stress parallel to the grain. 

(b) Determine the normal stress perpendicular to the grain. 

 

Figure 4a.2 – State of stress on a wooden piece 
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Solution 4a.2 

Objectives – what is asked? 

 Normal and shearing stress in the direction of the grain (σx’, τx’y’) 

What is given? 

A state of stress, where the normal stresses (σx = -4 MPa, σy = -1.6 MPa) and the shearing stress 

(τxy = 0 MPa) are known. 

From the drawing showing the orientation of the grain, the angle of rotation can be derived. 

 

The angle of rotation ϴ = -15° 

 

Principles and formulas 

 Rotation of stresses and shear: 

 𝜎𝑥′ =
𝜎𝑥 + 𝜎𝑦

2
+

𝜎𝑥 − 𝜎𝑦

2
𝑐𝑜𝑠(2𝜃) + 𝜏𝑥𝑦 𝑠𝑖𝑛(2𝜃) (1) 

 𝜎𝑦′ =
𝜎𝑥 + 𝜎𝑦

2
−

𝜎𝑥 − 𝜎𝑦

2
𝑐𝑜𝑠(2𝜃) − 𝜏𝑥𝑦 𝑠𝑖𝑛(2𝜃) (2) 

 𝜏𝑥′𝑦′ = −
𝜎𝑥 − 𝜎𝑦

2
sin(2𝜃) + 𝜏𝑥𝑦 cos(2𝜃) (3) 

 

Calculations 

(a) For the shearing stress: 

 𝜏𝑥′𝑦′ = −
−4 + 1.6

2
𝑠𝑖𝑛(2 ∗ −15°) − 0 = −0.6 𝑀𝑃𝑎 (4) 

(b) For the normal stress: 

 𝜎𝑥′ =
−4 − 1.6

2
+

−4 + 1.6

2
𝑐𝑜𝑠(2 ∗ −15°) + 0 = −3.84 𝑀𝑃𝑎 (5) 

 

  

y’

x’  = -15°
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Question 4a.3 – Transformation of 2D stress 

For the two-dimensional stress state shown in Figure 4a.3 determine: 

 The principal stresses. 

 The principal axes. 

 The maximum shear stress and the angle for the maximum shear stress. 

 The stress components exerted on the element obtained by rotating the reference axis 

counterclockwise 45°. 

 Strain energy density of the element before and after the 45° rotation (Young’s modulus and 

Poisson’s ratio are respectively 𝐸 = 200 GPa and 𝜈 = 0.25). 

 

 

Figure 4a.3 – State of stress on a 2D element 
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Solution 4a.3 

Objectives – what is asked? 

(a) The principal stresses 

(b) The principal axes 

(c) The maximum shear stress and the angle of maximum shear stress 

(d) Stresses after rotating 45° 

(e) Strain energy density before and after the rotation 

What is given?  

Stress components: 
𝜎𝑥 = 35  MPa 
𝜎𝑦 = −5 MPa 

𝜏𝑥𝑦 = 15 Mpa 

𝐸 = 200 GPa 
𝜈 = 0.25 
We assume the material is homogeneous and isotropic. 

Principles and formulas 

To find the principal stresses and principal axes, we use to fact the they correspond respectively to 
the eigenvalues and eigenvectors of the stress tensor: 

 det(𝜎̃ − 𝜆 · 𝕀) = 0 (1) 

The formula for the maximum shear stress and rotation of normal and shear stresses will be used as 
well and the formula for the shear energy density (in 2D): 

 𝑢0 =   
1

2
( 𝜎𝑥𝜀𝑥 + 𝜎𝑦𝜀𝑦 + 𝜏𝑥𝑦𝛾𝑦𝑥) (2) 

 

Calculations and numerical application 

 Principal Stresses 

We calculate the eigenvalues of the stress tensor: 

For which we solve the following equation: 

Which gives us: 

So the principal stresses are: 

 

𝜎̃ = (
35 15
15 −5

)  MPa  (3) 

det(𝜎̃ − 𝜆 · 𝕀) = 0 = |
35 − 𝜆 15

15 −5 − 𝜆
| = (35 − 𝜆)(−5 − 𝜆) − 152

= 𝜆2 − 30𝜆 − 400 
(4) 

𝜆 =
30 ± √900 + 1600

2
→ 𝜆1 = 40 MPa; 𝜆2 = −10 MPa (5) 

𝜎𝑚𝑖𝑛 = 𝜎2 =  −10 MPa  (6) 

𝜎𝑚𝑎𝑥 = 𝜎1  = 40 MPa (7) 
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Another way of calculating the principal stresses is using the formula provided in the notes: 

 Principal axes 

We calculate the Eigenvectors of the stress tensor given by Eq. (3). applying the following: 

where 𝑣⃗𝜆𝑖
 is the Eigenvector with Eigenvalue 𝜆𝑖. If we take 𝜆1 = 40 MPa: 

which means that the Eigenvector with Eigenvalue 𝜆1 = 40 MPa is: 

To calculate the other Eigenvector we can redo the calculations in Eq. (10) with 𝜆 = −10 MPa, or we 

use the fact that both Eigenvectors are orthogonal to each other: 

These two Eigenvectors define the direction of the two principal axes. The angle between the 

horizontal X axis and the principal axis is: 

which is graphically shown in the Figure below. 

 

Another way of calculating the direction of the principal axis is to use the formulas derived from class: 

 

 

𝜎𝑚𝑎𝑥,𝑚𝑖𝑛 =    
𝜎𝑥 + 𝜎𝑦

2
 ± √(

𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2 = 15  ± √(20)2 +  (15)2

= 15 ± 25 MPa 

(8) 

𝜎̃ · 𝑣⃗𝜆𝑖
= 𝜆𝑖 · 𝑣⃗𝜆𝑖

 (9) 

𝜎̃ · 𝑣⃗𝜆 = (
35 15
15 −5

) (
𝑎
𝑏

) = 40 (
𝑎
𝑏

) → {
35𝑎 + 15𝑏 = 40𝑎
15𝑎 − 5𝑏 = 40𝑏

→ {
−5𝑎 = −15𝑏

15𝑎 = 45𝑏
→ 𝑎 = 3𝑏 (10) 

𝑣⃗𝜆=40 MPa = 𝑣⃗1 = (
3
1

) (11) 

𝑣⃗𝜆=−10 MPa = 𝑣⃗2 = (
1

−3
) (12) 

𝜃𝑝 = arctan (
1

3
) = 18.435° (13) 

tan 2𝜃𝑝 =
2𝜏𝑥𝑦

𝜎𝑥 − 𝜎𝑦
=

2(15)

35 − (−5)
= 0.75 (14) 

2𝜃𝑝 = arctan (
3

4
) = 36.86° →  𝜃𝑝 = 18.43° (15) 
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Indeed, we can check that the normal stress exerted on face BC of the Figure above is given by Eq.(16): 

𝜎𝑥′ =
𝜎𝑥 + 𝜎𝑦

2
+

𝜎𝑥 − 𝜎𝑦

2
cos 2𝜃 + 𝜏𝑥𝑦 𝑠𝑖𝑛2𝜃 →  𝜎𝑥′

= 15 + 20 cos(36.86°) + 15 sin(36.86°)  
(16) 

𝜎𝑥′ = 40 MPa = 𝜎𝑚𝑎𝑥 = 𝜎1 (17) 

 The maximum shear stress and the angle for the maximum shear stress 

𝜏𝑚𝑎𝑥 = √(
𝜎𝑥 − 𝜎𝑦

2
)

2

+  𝜏𝑥𝑦
2 = √(20)2 +  (15)2 = 25 MPa (18) 

2𝜃𝑠 = 2𝜃𝑝 ± 90°  → 𝜃𝑠 = 18.43° ± 45° = {
63.43°

−26.57°
 (19) 

 

 The stresses after a 45° rotation 

We can use the equations for the rotation of the stresses on an element to calculate: 

𝜎𝑥′ =
𝜎𝑥 + 𝜎𝑦

2
+

𝜎𝑥 − 𝜎𝑦

2
cos 2𝜃 + 𝜏𝑥𝑦 sin 2𝜃 →  𝜎𝑥′ = 15 + 20 cos(90°) + 15 sin(90°)

= 30 MPa 
(20) 

𝜎𝑦′ =
𝜎𝑥 + 𝜎𝑦

2
−

𝜎𝑥 − 𝜎𝑦

2
cos 2𝜃 − 𝜏𝑥𝑦  sin 2𝜃  →  𝜎𝑦′ = 15 − 20 cos(90°) − 15 sin(90°)

= 0 MPa 
(21) 

𝜏𝑥′𝑦′ = −
𝜎𝑥 − 𝜎𝑦

2
sin 2𝜃 + 𝜏𝑥𝑦 cos 2𝜃 →  𝜏𝑥′𝑦′ = −20 sin(90°) + 15 cos(90°)

= −20 MPa 
(22) 

 

 The strain energy density after and before 45 ° rotation 

𝑢0 =   
1

2
( 𝜎𝑥𝜀𝑥 + 𝜎𝑦𝜀𝑦 + 𝜏𝑥𝑦𝛾𝑦𝑥) =

1

2𝐸
(𝜎𝑥

2 + 𝜎𝑦
2) −

𝜈

𝐸
𝜎𝑥𝜎𝑦 +

𝜏𝑥𝑦
2

2𝐺
 (23) 

Where, 𝐸 is the Young’s modulus, 𝐺 =  
𝐸

2(1+𝜈)
 is the shear modulus and 𝜈 is the Poisson’s ratio of the 

material, 𝜎𝑥, 𝜎𝑦 are respectively the normal stresses parallel to the 𝑥 and 𝑦-axis, of the material 

and 𝜏𝑥𝑦 is the shear stress along the (xy) plane 

𝑢0 = 4750 
J

m3⁄  (24) 

 

The strain energy should not change after a rotation. This is understandable because changing the 

axis does not modify the stress state. Therefore, we can choose any set of axis we want to 

calculate the energy, e.g. the principal axes, for which Eq. (23) is: 

𝑢0 =
1

2𝐸
(𝜎1

2 + 𝜎2
2) −

𝜈

𝐸
𝜎1𝜎2 = 4750 

J
m3⁄  (25) 
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Question 4a.4 – Stress transformation in 3D 

For the stress state shown in Figure 4a.4 with the stress tensor of ( 
22 6 10
6 13 5

10 5 5
) MPa determine 

 The three principal stresses and principal axes. 

 The maximum shear stress. 

 Calculate the Von Mises stress. 

 If the yield strength 𝜎𝑦𝑖𝑒𝑙𝑑 = 250 MPa, calculate the safety factor (SFVM) using Von Mises 

criterion. 

 

 

Figure 4a.4 – Stress state on a 3D element 
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Solution 4a.4  

Objectives – what is asked? 

 The three principal axes and principal stresses. 

 The maximum shear stress. 

 The Von Mises stress. 

 The factor of safety. 

What is given?  

The stress tensor 𝜎̃ = ( 
22 6 10
6 13 5

10 5 5
) MPa 

Tensile yield strength 𝜎𝑦𝑖𝑒𝑙𝑑 = 250 MPa  

The material is homogeneous and isotropic 

Principles and formulas 

The principal axes and principal stresses are derived from the stress tensor (eigenvalues, 

eigenvectors). The maximum shear stress in 3D is given by: 

 𝜏𝑚𝑎𝑥 = max (
𝜎1 − 𝜎2

2
,
𝜎1 − 𝜎3

2
,
𝜎2 − 𝜎3

2
) (1) 

The Von Mises stress in 3D and the corresponding factor of safety: 

 

𝜎𝑉𝑀 =
1

√2
√(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2 

𝑆𝐹𝑉𝑀 =
σyield

𝜎𝑉𝑀
 

(2) 

Calculations and numerical application 

 Principal Stresses 

The principal Stresses are obtained by finding the Eigenvalues of the given stress tensor using: 

After expanding the determinant we find the following equation: 

One solution is 𝜆 = 0 and the other two come from the following: 

So the principal stresses are: 

To find the principal axes we use  

 

 

det(𝜎̃ − 𝜆𝕀) = 0 = ( 
22 − 𝜆 6 10

6 13 − 𝜆 5
10 5 5 − 𝜆

) (3) 

𝜆3 − 40𝜆2 + 300𝜆 = 0 (4) 

𝜆2 − 40𝜆 + 300 = 0 → 𝜆 =
40 ± √1600 − 1200

2
= {

30 MPa
10 MPa

 (5) 

𝜎1 = 30 MPa; 𝜎2 = 10 MPa; 𝜎3 = 0 MPa (6) 

( 
22 6 10
6 13 5

10 5 5
) (

𝑎
𝑏
𝑐

) = 30 (
𝑎
𝑏
𝑐

) = (
22𝑎 + 6𝑏 + 10𝑐
6𝑎 + 13𝑏 + 5𝑐
10𝑎 + 5𝑏 + 5𝑐

) → {
8𝑎 = 6𝑏 + 10𝑐
6𝑎 = 17𝑏 − 5𝑐

10𝑎 = −5𝑏 + 25𝑐
  (7) 
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On solving this system of equations, we get: 

The first principal plane lies along the direction of the vector 

We do the same with the second principal stress: 

 

And the last one we can do the same thing or calculate the only vector family that is orthogonal to 

both 𝑣⃗1 and 𝑣⃗2: 

 

 Maximum shear stress  

The maximum shear stresses for each plane is: 

𝜏max (1,2) =  
𝜎1 − 𝜎2

2
=

30 − 10

2
= 10 MPa (12) 

𝜏max (2,3) =  
𝜎2 − 𝜎3

2
=

10 − 0

2
= 5 MPa (13) 

𝜏max (1,3) =
𝜎1 − 𝜎3

2
=

30 − 0

2
= 15 MPa  (14) 

Overall maximum shear stress is 𝜏max 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 15 MPa. 

 

 Von Mises stress is calculated using the formula 

Substituting values of 𝜎1, 𝜎2 𝑎𝑛𝑑 𝜎3 in this equation. We get 

 

 Safety Factor is given by  

 

  

𝑎 = 2𝑐  &  𝑏 = 𝑐 (8) 

𝑣⃗1 = (
2
1
1

) (9) 

( 
22 6 10
6 13 5

10 5 5
) (

𝑎
𝑏
𝑐

) = 10 (
𝑎
𝑏
𝑐

) = (
22𝑎 + 6𝑏 + 10𝑐
6𝑎 + 13𝑏 + 5𝑐
10𝑎 + 5𝑏 + 5𝑐

) → {
−12𝑎 = 6𝑏 + 10𝑐

6𝑎 = −3𝑏 − 5𝑐
10𝑎 = −5𝑏 + 5𝑐

→ 𝑣⃗2 = (
−1
2
0

) (10) 

𝑣⃗3 = 𝑣⃗1 × 𝑣⃗2 = (
−2
−1

5
) (11)  

𝜎𝑉𝑀 =
1

√2
√(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2  (15) 

𝜎𝑉𝑀 =
1

√2
√(30 − 10)2 + (10 − 0)2 + (0 − 30)2 = 10√7 ≈ 26.5 MPa (16) 

𝑆𝐹𝑉𝑀 =
σyield

𝜎𝑉𝑀
≈

250

26.5
≈ 9.45 (17) 
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Question 4a.5 – Principal stresses and maximum shear directions 

 Consider the state of stress on an element as given below (shown in Figure 4a.5). 

(a) Determine the principal axes (calculate the angle between the x-axis shown in Figure 

4a.5  and the principal axes). 

(b) Determine the principal stresses and draw them on a rotated element. 

(c) Determine the orientation of the axes of minimum/maximum in-plane shearing stress 

(calculate the angle between the x-axis shown in Figure 4a.5 and the axes of minimum 

and maximum shear stress). 

(d) Determine the value of the maximum in-plane shearing stress. 

(e) Determine the corresponding normal stresses. 

 

Figure 4a.5 – Stress state on an element  
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Solution 4a.5 

Objectives – what is asked? 

(a) The orientation of the principal planes 

(b) The principal stresses 𝜎𝑚𝑎𝑥,𝑚𝑖𝑛 

(c) The orientation of the planes of maximum in-plane shearing 

(d) The value of the maximum in-plane shearing stress, 𝜏𝑚𝑎𝑥 

(e) The normal stress in the orientation of maximum shear stress 

What is given? 

(a) - (e) A state of stress, where the normal stresses in x (σx = 27 MPa, σy = -45 MPa) and the 

shearing stress (τxy = -18 MPa) are known. 

Principles and formulas 

 Angle between the principal axes and the current axes: 

 tan(2𝜃𝑝) =
2𝜏𝑥𝑦

𝜎𝑥 − 𝜎𝑦
 (1) 

 Principal stresses: 

 𝜎𝑚𝑎𝑥,𝑚𝑖𝑛 =
𝜎𝑥 + 𝜎𝑦

2
± √(

𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2  (2) 

The maximum shear stress: 

 𝜏𝑚𝑎𝑥 = √(
𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2  (3) 

Calculations and numerical applications 

(a) The angle between the original X-axis and the principal axes can be calculated in a 

straightforward manner with the formula given above. 

 2θp = arctan (
2𝜏𝑥𝑦

𝜎𝑥 − 𝜎𝑦
) = arctan (

−2 ∗ 18

27 − (−45)
) = −26.57° (4) 

Therefore, the angle between the original X-axis and the first principal axis is -13.28°. The 

other principal axis is orthogonal and therefore at 90° from the first principal axis (at 76.72° 

from the original X-axis). 

 

(b) The principal stresses as well: 

 𝜎𝑚𝑎𝑥,𝑚𝑖𝑛 =
27 − 45

2
± √(

27 − (−45)

2
)

2

+ (−18)2 = −9 ± 40.25 𝑀𝑃𝑎  (5) 

 
𝜎𝑚𝑎𝑥 = 31.25 𝑀𝑃𝑎 

𝜎𝑚𝑖𝑛 = −49.25 𝑀𝑃𝑎 
(6) 
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Drawing them on a rotated element: 

 
 

Note: it is also possible to use the method seen in exercise 5.3 (i.e. calculating the Eigenvalues 

and Eigenvectors of the stress tensor). We use it hereafter to validate our results. The stress 

tensor is defined here as follows: 

For which we solve the following equation: 

 𝜆 =
−18 ± √182 + 4 ∗ 1 ∗ 1539

2
→ 𝜆1 = 31.25 MPa; 𝜆2 = −49.25 MPa (9) 

The principal stresses are the Eigenvalues from the stress tensor: 

 

 

𝜎𝑚𝑖𝑛 = 𝜎2 =  −49.25 MPa  

𝜎𝑚𝑎𝑥 = 𝜎1 =  31.25 MPa  

 

(10) 

And the directions of the principal axes correspond to the Eigenvectors of the stress tensor, 

which are defined as follows. 

 𝜎̃ · 𝑣⃗𝜆𝑖
= 𝜆𝑖 · 𝑣⃗𝜆𝑖

 (11) 

with 𝑣⃗𝜆𝑖
 being the Eigenvector with Eigenvalue 𝜆𝑖. For 𝜆1 = 40 MPa: 

 𝜎̃ · 𝑣⃗𝜆 = (
27 −18

−18 −45
) (

𝑎
𝑏

) = 31.25 (
𝑎
𝑏

) → {
−18𝑏 = 4.25𝑎

−18𝑎 = 76.25𝑏
→ 𝑎 = −4.236𝑏 (12) 

 𝑣⃗1 = (
−4.236

1
) (13) 

The angle between the x axis and the first principal axis is: 

 𝜃𝑝 = arctan (
1

−4.236
) = −13.28° (14) 

 

 

 

𝜎̃ = (
27 −18

−18 −45
)  MPa  (7) 

det(𝜎̃ − 𝜆 · 𝕀) = 0 = |
27 − 𝜆 −18

−18 −45 − 𝜆
| = 

(27 − 𝜆)(−45 − 𝜆) − 182 = 𝜆2 + 18𝜆 − 1539 = 0 
(8) 
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(c) We know that the axes of minimum and maximum shearing stress are found at 45° from the 

principal axes. 

 𝜃𝑠 = 𝜃𝑝 ± 45° = −13.28° ± 45° = {
31.72°

−58.28°
 (15) 

 

 

(d) The maximum shearing stress: 

 

 𝜏𝑚𝑎𝑥 = √(
27 − (−45)

2
)

2

+ (−18)2 = 40.25 𝑀𝑃𝑎 (16) 

(e) In the direction of maximum (and minimum) shear stress, the normal stresses are equal 

and have for value the average value of the normal stresses (which is constant no matter 

the direction) 

 𝜎𝜏𝑚𝑎𝑥 =  𝜎𝑎𝑣𝑒 =
𝜎𝑥 + 𝜎𝑦

2
= −9 𝑀𝑃𝑎 (17) 

 

  



Danick Briand Solutions CdM1 Série 4a 

 
 

Conception de Mécanismes I - 2024 Page 16 of 18 © EPFL-STI-SMT 

Question 4a.6 – Safety factor and maximal load 

Consider the same state of stress as in the previous exercise (4a.5), except that the shear stress on 

the element (τxy) is unknown (see Figure 4a.6). The other components of the stress (σx and σy) remain 

as previously described (σx = 27 MPa, σy = -45 MPa). The material to which this element belongs has a 

yield stress of σyield = 150 MPa. 

Using the Von Mises criterion, determine the maximal value for τxy for which the safety 

factor is still equal or above to 2. 

Hint: consider that the principal stresses can be written in a simplified manner as:  

𝜎1,2 = 𝜎𝑎𝑣𝑒 ±  𝑅 

 

Figure 4a.6 – Stress state on an element with unknown τxy 
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Solution 4a.6 

Objectives – what is asked? 

The maximal value for τxy with a safety factor superior or equal to 2. 

What is given? 

A state of stress, where the normal stresses in x (σx = 27 MPa, σy = -45 MPa)  

Principles and formulas 

The Von Mises stress (in 2D): 

 𝜎𝑉𝑀 = √𝜎1
2 − 𝜎1𝜎2 +  𝜎2

2 (1) 

The safety factor: 

 𝑆𝐹𝑉𝑀 =  
𝜎𝑦𝑖𝑒𝑙𝑑

𝜎𝑉𝑀
 (2) 

Calculations 

Consider the definition of the Von Mises stress in 2D and the safety factor: 

 
𝜎𝑉𝑀 = √𝜎1

2 − 𝜎1𝜎2 +  𝜎2
2 =

𝜎𝑦𝑖𝑒𝑙𝑑

𝑆𝐹𝑉𝑀
 

 

(3) 

To simplify, we consider the following relations: 

 

𝜎𝑥 + 𝜎𝑦

2
= 𝜎𝑎𝑣𝑒 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(
𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2 = 𝑅2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(4) 

These stem from the fact that it can be shown that all planar stresses are found on a circle of 

radius 𝑅 with center 𝜎𝑎𝑣𝑒. Using these relations to simplify the equation of the principal 

stresses we write: 

 𝜎1,2 = 𝜎𝑎𝑣𝑒 ± 𝑅 (5) 

The Von Mises stress can then be simplified: 

 𝜎𝑉𝑀
2 = (𝜎𝑎𝑣𝑒 + 𝑅)2 − (𝜎𝑎𝑣𝑒 + 𝑅)(𝜎𝑎𝑣𝑒 − 𝑅) +  (𝜎𝑎𝑣𝑒 − 𝑅)2 (6) 

 𝜎𝑉𝑀
2 = 𝜎𝑎𝑣𝑒

2 + 2𝜎𝑎𝑣𝑒𝑅 + 𝑅2 − 𝜎𝑎𝑣𝑒
2 + 𝑅2 + 𝜎𝑎𝑣𝑒

2 − 2𝜎𝑎𝑣𝑒𝑅 + 𝑅2 (7) 

 𝜎𝑉𝑀
2 = 𝜎𝑎𝑣𝑒

2 + 3𝑅2 =
𝜎𝑦𝑖𝑒𝑙𝑑

2

𝑆𝐹𝑉𝑀
2  (8) 

 𝑅 is the only term that contains 𝜏𝑥𝑦, so we isolate it. 

 𝑅2 =
1

3
(
𝜎𝑦𝑖𝑒𝑙𝑑

2

𝑆𝐹𝑉𝑀
2 − 𝜎𝑎𝑣𝑒

2 ) (9) 
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Expressing 𝑅 and 𝜎𝑎𝑣𝑒 back as a function of the stresses and solving for 𝜏𝑥𝑦 gives: 

 𝜏𝑥𝑦 = √
1

3
(

𝜎𝑦𝑖𝑒𝑙𝑑
2

𝑆𝐹𝑉𝑀
2 − (

𝜎𝑥 + 𝜎𝑦

2
)

2

) − (
𝜎𝑥 − 𝜎𝑦

2
)

2

 (10) 

Numerical application 

With numerical values, the maximal shear stress to have a safety factor of 2 is: 

 𝜏𝑥𝑦 = √
1

3
(

1502

4
− (

27 − 45

2
)

2

) − (
27 + 45

2
)

2

= 23.49 𝑀𝑃𝑎 (11) 

 

 

 


